JGP-Vol6,n.1, 1989

The geometry of
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Abstract. The paper classifies the locally gauge invariant Lagrangians on the jer
bundle JY(E ® C), for interacting particle and gauge fields. This serves to clarify
the global nature of the Utiyama extension process (Yang-Mills trick) for arbi-
trary principal bundles P and gives the classical (local) results when P is trivial:
P =M x G. The emphasis of the paper is a formulation of the results in terms
of geometric objects on associated bundles over M rather than on bundles over P.

I. INTRODUCTION

In his original paper [2] on invariant interactions, Utiyama proved a theorem
(now known as Utiyama’s theorem) that classified those Lagrangians for the
gauge fields which are locally gauge invariant. While Utiyama’s arguments are
local in nature (relying on a trivial bundle structure) global forinulations of
this theorem and other aspects of his paper for nou-trivial bundles subsequently
have appeared in numerous places in the literature (Cf. Bleecker [2], Garcia
[3, 4, 51, Garcia and Perez-Rendon [6], Parker [7] and Mangiarotti and Modu-
gno [8], and Modugno [9], for example).

In this paper, we prove the following generalization of Utiyama’s (classifica-
tion) theorem: A Lagrangian L* for the particle fields 7 interacting with gauge
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fields ¢ is locally gauge invariant if and only if it is a function of only the particle
fields 7, their covariant derivatives V°7, and the curvature F° of the gauge
fields 0. We prove this at the group level rather than by passing to vector fields
(infinitesimal gauge transformations), illustrating the prominence of the gauge
orbit structure in the result and avoiding certain intricacies with partial differen-
tial equations.

The paper also shows how to generalize the Utiyama extension process (Yang-
Mills trick) for obtaining a locally gauge invariant Lagrangian LY for particlegauge
interaction from a «globally» gauge invariant Lagrangian L1 for the «free»
particles. Since for non-trivial bundles, global gauge transformations are non-
existent, we show, using the classification theorem, that an appropriate generali-
zation involves invariance of L1 under a certain set G7 of local bundle maps.
Our approach here involves a fixed background gauge field (connection) 7,
which seems indigenous to the global theory (¥ is the trivial connection in Utiya-
ma’s case). The classification theorem also serves to shed some light on the
topic of «minimal» interaction Lagrangians for the particle and gauge fields.

An additional purpose of ther paper is to emphasize an appropriate fiber
bundle formalism for expressing the global aspects of the gauge theory (no
local coordinates, trivial bundle structure, etc.). Our approach is essentially
the approach originated by Garcia [3] (also cf. Modugno (9], Mangiarotti and
Modugno [8]). The particle and gauge fields are sections 7 - M > E, 0 . M~ C
of certain fiber bundles E, C over the base manifold M (spacetime). Then an
interaction Lagrangian is a smooth map L : Jl(E ® C) ~ IR on the first order
jet bundle of their fibered product: £ & C. The other prominent approach to
a global formulation of the theory is to view the gauge fields as certain 1-forms
on a principal bundle P over M (cf. Bleecker [2]), and in this approach the ap-
propriate bundles are equivariant bundles over P. The connection of this with
the former approach is briefly delineated in Sections III and IV below. Basi-
cally the natural equivalence between the bundles in the equivariant category
and their associated bundles over M allows one to formulate the theory in either
category.

After submission of this paper it was brought to our attention that the recent
work by Mangiarotti [18, 19] and Modugno [20] extends their previous work
on free gauge fields (Ref.’s 8-9) to gauge fields interacting with particle fields.
Their work will be briefly described in the conclusion (Section VIII) for the
sake of comparison.

II. A GEOMETRICAL STRUCTURE FOR THE THEORY

In this section we present the main body of our results and the indication
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of their proofs, relegating the precise definitions, descriptions of notation, and
further details to the ensuing sections.

The natural tool for our formulation of the gauge theory is the functor from
the category of equivariant bundles S = P over a fixed principal bundle P =
= P(M, G) 3> M into the category of bundles over M, wich takes S into its asso-
ciated bundleS/G — M. Thus for us the gauge fields are sections of the connec-
tion bundle C = A}_IC(P, TP)/G and the particle fields are sections 7 of an appro-
priate vector bundle £ = (P x F)/G (Cf. also Ref’s 3, 6 for related developments
on this approach). While one can formulate the theory in the equivariant category
(as, for example, Bleecker [2] does) we find the associated bundles more conve-
nient since then the fields are functions (sections) on spacetime M and one has
available all the standard variational calculus (Euler-Lagrange equations, symme-
tries and couservation laws) based on the jet bundles JIE, JIC etc. (for this
Cf., for example, Hermann [10, 11], Garcia [12], Krupka [13], Betounes {14,
15, 16]). In the equivariant category one must develop the variational theory
from scratch (Bleecker {2], Parker [7], etc.).

The global formulation of Utiyama’s theorem involves the curvature map
Q :J'C—> A% (M, AdP) defined by

2.1) Q([o], =F°(x)
(Cf. Garcia [3], Garcia and Perez-Rendon [6], Mangiarotti and Modugno [8}).
With @ denoting the fibered product, 2 extends naturally to a bundle epimor-

phism Q* : JI(E © C)~> E! ® A2(M, AdP) (with E! = E ® A' (M, E)) defined
by

2.2) Q* (7, [01,) = (7(x), Vor(x), F°(x))

Furthermore, each fixed connection v - M = C gives a natural bundle iso-
morphism B_ -J1E > E'! =E ® A' (M, E) defined by

2.3) B (7)) = (), V77 (x)

Thus one gets the following commutative diagram:

JE ¥ JNESC) 7 e
e
|

24) B Qr Q| VAT (9 Q

Y P | e 2
|
|
1
|
E 1 El'e A2(M, AdP) A (M, AdP)

Py P,
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where p,, p,. q, are the natural projections, Q% =p o Q%, Q% =p, o QF,
and Uy EB;1 o Q+1 (the Utiyama extension map).

Now there are representations of the automorphism group Aut(P) of P (and
thus its subgroup GA4 (P) of gauge transformations of P) on the associated bundles:
C E, E', A°>(M, AdP) and their fibered products. For simplicity we denote the
representations of the p € Aut(P) again by p, and the prolongations to the respec-
tive jet bundles by p!. The Lagrangians of interest to us here are those which
are invariant (,'2”ZL = 0) under infinitesimal gauge transformations Z (a repre-
sentation of a vertical right invariant vector field Z on P). However, since the
flow generated by Z consists of only locally defined gauge transformations
p,, we concentrate on the notion of local gauge invariance: A local gauge transfor-
mation of P is a local diffeomorphism p of a restricted subbundle P| W = W)
over some open W C M, such that p(ug) = p(u)g and w o p = m. We denote the
set of local gauge transformations by GA (P)loc. The above representations of
Aut(P) on associated bundles carry over to GA(P)loc as well, and a function
K on such an associated bundle (or a Lagrangian L on its jet bundle) is called
locally gauge invariant if K o p = K(L o p! = L) for every p € GA Py -

The results of the paper can now be stated as follows

THEOREM 1. The extended curvature map 2t intertwines the respective re-
presentations:

Q+opl =po.Q+

for every p € Aut(P) (and also for local automorphisms of P).

The proof of this is given in Section IV. As a corollary one can now easily

prove

THEOREM 2. If a Lagrangian L* -J L(E @ C) = R factors through Q* :
L+ — K+ ° Q+

for some K* : E' ® A>(M, AdP) - R, then L* o p! = L% if and only if
K* o p = K" . In particular L* is locally gauge invariant if and only if K* is. n

Our main result is

THEOREM 3. Each locally gauge invariant Lagrangian L™ :J 1 (E @ C)— IR factors
through Q% :

L+:K+OQ+,



THE GEOMETRY OF GAUGE-PARTICLE FIELD INTERACTION, ETC. 111
By theorem 2, K* is necessarily locally gauge invariant.
We prove this theorem via:

LEMMA 1: For each chart U C M there exists a local bundle map
At :E' © A7(M, AdP) > T (E®C)
(defined on the fiber over Ua) such that
(@) QF o AT =1

(b) for each ([T]x , [a]x) eJYEe(C),xE U, there exists a local gauge transfor-
mation p such that

At o QF([71,.[0],) =o' (71, {0].). .
With this Lemma one now easily has:

Proof of Theorem 3: on the fibers over U_ define K“; by K*a =L% o A’;. Then
since L™ is locally gauge invariant, part (b) of Lemma 1 shows that

K'oQF =L* o A® o QF =L*

on the fibers over U_. But since 2% is an epimorphism, this last equation shows
that K“; = KJ"3 on the fibers over U, N Uﬁ. Thus one gets a globally defined
map K* such that K* « Q% =L*,

Putting theorems 2 and 3 together then gives the classification theorem:
A Lagrangian L* on JUE @ O) is locally gauge invariant if and only if there
exists a locally gauge invariant function XK* on El o AZ(M, AdP) such that
LT =K' o Q% ie.

L* ([r],,0]) = K* (7(x), Vo1 (x), F° (x)). =

As a corollary (by, say, taking £ = O) one obtaines:

UTIYAMA’S THEOREM: A Lagrangian L, : JIC > R is locally gauge inva-
riant if and only if there exists a locally gauge invariant function K2 : AZ(M,
AdP) = IR such that

ie.
L,({0],) = K, (F° (x)). .

Finally, the other side of the diagram (2.4) gives a prescription for the:
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UTIYAMA EXTENSION PROCESS: with respect to a given connection 7
M = C, each Lagrangian Ll :J*E > IR for the particle fields extends to a Lagrangian
L;’ cJYE © C) > R for interacting particle and gauge fields. This Lagrangian
is defined by

where

= p-1 + — p-1 +
U’Y—B‘Y le—B7 oploQ

is the Utiyama map (relative to 7).

Examination of Uy in local coordinates (Cf. Section VI) shows that this is an
appropriate generalization of Utiyama’s construction and reduces to his case
(P = M x G) when 7 is the trivial connection on M x G. The presence of ¥ in
the extension is perhaps disconcerting, but for non-trivial bundles this is in the
nature of things (there is no canonical isomorphism J!E — E!), If one wishes
to change the rules, this difficulty can be obviated by just considering functions
K, E! - IR as representing the particle Lagrangians (Cf. Ref. 6). Utiyama’s
result that the extension L] is locally gauge invariant when L, is globally gauge
invariant generalizes as follows. For non-trivial principal bundles the notion of
a global gauge transformation makes no sense, and so we proceed to get the
correct invariance concept for L, from the classification theorem. Noting that

LY =Kl op, o QF

where K"l’ =1L, o B;l , we see by Theorem 2 that LI’ is locally gauge invariant
if and only if K“l’ °p, is; and of course K'l’ °p, is locally gauge invariant if and
only if K] is. But.

KIoszl oB;1 o p

=(L1 OB;I opoBv)oB;l
andso Ko p = K] ifand only if L, o B;l opoB =L, . Thus:

THEOREM 4: The extension L“{ is locally gauge invariant if and only if L1 is
invariant under

=101
G ={G;'opoB | ECADP),,} .

By examining the coordinate expression for the local bundle map B;l °opPo B7 :
JYE - J'E (Section VI) one sees that invariance of L1 under G7 is an appro-
priate generalization of Utiyama’s global gauge invariance, and reduces to his
case (P =M x G) when vy = the trivial connection.
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The final stage in Utiyama’s extension process is to add on to L"l’ a locally
gauge invariant Lagrangian for the gauge fields, which by Utiyama’s theorem
has the form K, o Q% = K, o p, o Q% . Thus one obtains a locally gauge in-
variant Lagrangian of the form

* =(K1’op1 +K20p2)oQ+,

which by our classification theorem has, among all the locally gauge invariant
Lagrangians on JI(E ® (), a «minimal» amount of interaction between the
particle and gauge fields (we do not give a precise meaning to «minimaly interac-
tion here).

III. EQUIVARIANT BUNDLES AND THEIR ASSOCIATED BUNDLES

The equivariant category is the underlying format for the differential geo-
metric aspects of gauge theory, and we review here a few main features of this,
some of which can be found in the standard texts by Bleecker [2] and Koba-
yashi and Nomizu [17}.

For any fixed base space M, consider the category of fiber bundles p : E - M
over M with the set of morphisms B(E, E) consisting of the fiber preserving
diffeomorphisms (bundle maps) f : E > E. The diffeomorphism induced by f
on the base space is denoted by f,, - M - M. Lftting I'(E) denote the set of
sections 7 - M — E, one gets for each f € B(E, E) a map (puliback map) f* =
= I'(E) - ['(E) defined by

frHry=f"erof,

When E is a vector bundle, we let 4% (M, FE) denote the bundle over M with
fibers A¥(M, E ), consisting of the k-linear, anti-symmetric maps 6.:TM  x

.x TM_— E_.Then each f€ B(E, E) gives rise to a bundle map A% (f) A’g‘(M
E)—>Ak(M E)refmed by Ak(f) (x, 0 ), = (fM(x) fo 6 odf“ ]" (x))

The sections of 4% (M, E) will be denoted by AF (M E) (A" =T o A%) and
are the differential k-forms on M with values in I'(E). For f € B(E, E), the pull-
back map A* ()* : AKM, E)> A* (M, E) is

AR*0)= A (F7 1Yo 801,

Throughout the paper we suppose that G is a Lie group (with Lie algebra
%) and that 7 : P — M is a principal G-bundle over M with right G-action denoted
by Rgu = ug. If § and Q are manifolds with right G-actions, thenamap % : S - Q
is called equivariant if h(sg) = h(s)g for every s € S, g € G. In particular the
automorphism group Aut(P) of P consists of all the equivariant diffeomorphisms
p : P = P, The subgroup GA(P) of gauge transformations of P consists of those
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automorphisms which induce the identity on the base space M. An equivariant
bundle over P is a fiber bundle 6 : S — P with right G-action such that § is an
equivariant map. The equivariant cateogry has the equivariant bundles over P
as objects and the equivariant diffeomorphisms Be (S, §) as morphisms. For each
S in theis category oen gets an associated bundle &' : S/G - M, where S/G is the
set of equivalence classes [s] (s™s'if s" = sg for some g €G), and §'([s]) =7 0 & (s5).
This association § — S§/G gives a covariant functor which takes a morphism
fE€BS, S) over into the bundle map f. :S/G ~> §/G defined by f . [s] = [fO].
The basic result for associated bundles is that the sections of S/G are in -1
correspondence with the equivariant sections Fe (S) of S:

PROPOSITION 1. There is a bijection
p: T (8)—>T(S/G)

such that
frou=nof*

for every f € B,(S, S). Thus u is a natural equivalence berween the functors
I, and I o (-/G). =

When S is an equivariant vector bundle the above considerations apply equally
well to the equivariant bundle A* (P S) whose right action is given by A* (ﬁg),
where R denotes the right action on S. This action restricts to the subbundle
A’;I (P, S) consisting of (v, 0u) c 4k (P, S)u where Hu 18 horizontal: Gu (Z,]l, .,
ij) = 0 whenever one of the ZL s is vertical: dm | qul =0(e., ZL € VP, where
VP is the vertical subbundle of 7P). There is then a natural equivalence

v AKX (P, )G — 4 M, S/G)
vo d¥(f)g =AF(fg)ov

and so in the sequel we will identify these bundles. Let A’;“(P, S) denote the
equivariant sections of A’I‘{(P, S) (the horizontal, equivariant, k-forms on P with
values in I'(S)). The analog of Proposition 1 is

PROPOSITION 2. There is a bijection
pk Ak (PS) > AR (M, S/6)

such that
W ok (fyx = Ak (fg)* o it

(so u* is a natural equivalence).
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IV. THE CONNECTION BUNDLE AND PROOF OF THEOREM 1

We now specialize the foregoing to the bundles of concern for this paper.
For the sake of simplifying the notation (but at the risk of adding confusion),
we will denote the natural equivalence uk in Proposition 2 simply by u and the
pullbacks like A% (f)* by f*. Furthermore the equivariant bundles S of con-
cern here are such that each p € Aut(P) gives ap € B, (S) with 5? = p. The
map p together with the corresponding map ,BG - S/G - S/G will both be denoted
simply by p. With these conventions, the identity in Proposition 2 reads

prop=pop*

The specific bundles we need are the following:

(1) Suppose F is a finite dimensional vector space with left linear G-action
B :GxF—F, B(g, £) = g&. Then P x F is an equivariant bundle with right action:
u, &Heg = (ug, g_lf). We denote the corresponding associated bundle by £ =
= (P x F)/G. For p € Aut(P), one gets an equivariant bundle map of P x F:
p(u, &) = (pu), &). Using the canonical identification of F with the fibers of
P x F, one has A¥(P, Px F) ~ A*(P, F) and so p(u, 6,)=(p(u),0, odp™* |

).
p)
Then for an Fvalued k-form 8 € A* (P, F), (p*8), =6 o dp [’;

p(u)

(2) The tangent bundle 7P is an equivariant bundle with right action (u, Zu ) =
=(g ng | .2, )- This action restricts to the vertical subbundle VP C TP. Each
p € Aut(P) extends to an equivariant bundle map of TP (and VP) given by p(u,
Z,) = (pw), dp | uZu). By the foregoing, the sections of TP/G correspond to
equivariant (i.e. right invariant) vector fields Z on P : Zug = ng [ uZu. (These
are the infinitesimal automorphisms of P). The bundle VP/G is called the adjoint
bundle (gauge algebra) and the sections of it correspond to vertical equivariant
vector fields on P (the infinitesimal gauge transformations of P). We take for the
Lie algebra ¢ of G the set of left invariant vector fields on G. The map L,
G- P r, () = ug gives a representation I' : ¥ — Vect(P) of ¢ as fundamental
vector fields on P : I'(§), = dar, | e*;’e. Now P x % is an equivariant bundle with
right action: (u, £)g = (ug, Adg-l ¢), and there is an equivariant bundle iso-
morphism Q : P x ¥ — VP given by Q(u, &) = (u, I'(¢),). Consequently 4dP =
=VP/G ~(Px¥%)G.

(3) From the foregoing generalities, the equivariant bundle A! (P, TP) has its
right action given by (v, b, )8 = (ug, ng [, ° b, o ng_l | ug) and the action
of p € Aut(P) on A (P, TP) works out to be p(u, b,) = (p(u), dp |u °ob, o
odp™ 1 ). Consequently the pullback of sections b : P - A1 (P, TP) : b(u) =

ip(u)

= (u, b,) is given by p*(b), = dp~! | o) © bp(u) o dp | .- All of these actions
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restrict to the equivariant subbundle: A}iC(P, TP) = {(u, h,) | h,, is horizontal
and dm |, o h =dn| ;. Each h, projects TP on a complementary subspace
to VP andv, =1—h, TP — VP, restricts to the identity on VP . The bundle
AII(P, VP) of such elements (u, vu) is then an equivariant bundle isomorphic
to AIIJC(P, TP). We call A;{C(P, TP) the Ehresmann bundle and the equivariant
sections of it: & - P — A}IC (P, TP). Ehresmann connections. The corresponding
associated bundle

C=Ap (P, TP)/G C A' (M, TP/G)

is called the connection bundle, and its sections o : M = C, connections on M
(they are certain 1-forms on M with values in I'(TP/G)). Each Ehresmann connec-
tion 4 gives an equivariant section VP> AI1 (P, VP) (UZ =1 - hu) and using
the isomorphism Q - P x ¥ — VP, one gets the corresponding connection form
w" . This is the equivariant section w”" : P - A (P, @ )~ AV(P, P x % ) defined
by w" Z) = Q_l(uh (Z)). All of these different ways of viewing connections:
h vt Wt {h, (TP, ), cp are of course equivalent, but we take Ehresmann con-
nections as fundamental since they correspond to connections gonM :h = /.1_1 (o).

For an Ehresmann connection /# one gets the usual covariant derivative D" .
A’ec P F)-> A"H’“e1 (P, F) defined by D" = H" o d where H" is the horizontaliza-
tion operator on forms H" (6)(Z', . . ., Z™y = 0(Zz', . .., hZ™). Thus each
connection ¢ : M — C gives a covariant derivative Ve . A* WM, E)— AR+ WM, E)
defined by

Vor = u[p* @uln)].

In addition the curvature of / is the form Q" =D"w" € A}, (P, &) and the
corresponding curvature of ¢ is

Fe =u[9“_1(°)].

The transformation properties of these operators and forms under automor-
phisms p € Aut(P) is as follows. First an easy calculation shows that

HP'h = px o H o p~ 17

and consequently since d commutes with pullbacks
DP*h = p* o D" o p71%,

Hence for 8 € A’:(P, F)
D°™h (p*0) = p*(D"9).

A short computation shows that the connection form w" transforms according
to
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P*h

W T = pxw)
and consequently

Qe™h = prah)

Passing now to the associated bundles and using the fact (Propositions 1

and 2) that g is a natural equivalence, one finds that

Vereprr)=p*(V°7)
for T € A* M, E)and

*

FPo° =p*(F°)

With these identities the proof of Theorem 1 (Section II) is as follows.

First recall that for a fiber bundle Q - M over M, the Ist order jet bundle
J'Q consists of equivalence classes [7], , x € M of local sections 7 : M = Q.
Two sections 7, T being equivalent at x if they, as well as their first order partial
derivatives, have the same values at x. A bundle map f : @ = Q then prolongs
to a bundle map fl 2t g-J! Q defined by

) =7 * 1l
Putting everything together. the proof of Theorem 1 is
Qo p' (7], 101 )= Ap™ 1 1, ) (671 0], ))
= (07" oy CN.Te 0 1Yo, 00, FP T 0 (g, W)
= (p(r(x)), (V7 7(x)), p(F* (x)))
=po 2 ([r],, [0])

oM (x)

V. COORDINATE EXPRESSIONS

For some of the ensuing work we will need the following coordinate expres-
sions. Let ¢, - U, x G = P| U _=n"'(U,) be alocal trivialization of P, ¢ (g) =
=¢,(x, g),s0 ¢ . : G~ '{x}is a difffomorphism. Assume that each U_C M
is a chart on M with coordinate functions x,, i = 1, . .., dim(M), and suppose
that (V, y%),a =1, ..., dim (G)is a fixed chart about the identity ¢ € G. Then
(¢, (U, x V),X;, y") is a chart on P with X,(u) =x; o m(), 7* ) = y* (¢} ,,,@))-
There are local equivariant vector fields £,and £” on P| U, defined by

0
Ei(u) = dR¢;}(u)luo (B_)-ct luo)
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o)

a = —
E (u)—de);;(u)]uo ST ‘uol

where x = m(u) and u, = ¢, . (e). Note that if Z is an equivariant vector field
on P, then its local expression Z = Z,E, + Z*E? on P| U_ has component func-
tions Z,, Z which only depend on x : Z, = Z o m where Z,(x) = Z_l.(q)ax(e))
(similarly for Z°). In the sequel we will identify functions F on M with their
pullbacks F = F o mto P (i.e. F = F).
If 22 is an Ehresmann connection then
h(E%) =0
h(E) =E, —Aj.’ (h)E*
where
. 3]
— _— 54a
AT ==y | Ly, |07
X,
are the local components for & (the minus sign is chosen for convenience in the
ensuing formulas).

The corresponding local expression for a connection o : M = ( is as follows.
Let h = 1 (0), Af(e) = AXh). For a vector field X on M, the section o(X) : M —~
- TP/G, (6(X)(x) = 0,(X),)) corresponds to an equivariant vector field X° - P~
- TP on P : X° = p 1 (0(X)) is called the horizontal lift of X (h(X°) = X°,
d1r|uX° =X ). Locally one has

m(U)

X7 = X,(E,— A%(0) E®),

X, = X(x), and letting e, = u(E,), ¢ = u(E?) be the corresponding local sections
of TP/G one finds that
0(X) = X (e, — A7 (0)e”)

locally on Ua. As a 1-form on M with values in ['(TP/G) the local expression
for o is

0 = (e, — Aj(0) e”) ®dx;

Using any of the various means for computing the curvature (say F°(X, Y) =
=u(X, Y]° —[X°, Y°])) one finds that locally

— c
Fe = Fl?j(o) €€ ® dx, a'xj
where

- b
Ft.ci(o) = aA;/axl. — aAf/ax]. — m:bA]”Ai



THE GEOMETRY OF GAUGE-PARTICLE FIELD INTERACTION, ETC. 119

Here the m¢ <, are the structure constants of G relative to the basis 79 where
(Ta) —dL [.(@/ay?],).

The component expression for V7 , 7 € I'(E) is as follows. Let v, U, xF—
E| U, be the local trivialization given by ¥, (x, 8 =g, ), £, and let {ek}
a basis for F with coefficient functionals {¢7} (basis for F*). Then 7 = r’?k
where

() = X L))
and

€ 0=y, ()

ax
The action B . G x F = F gives a matrix representation of 7% on Hom(F),
again denoted by T?, with entries

T, =3B, )3y

where Bkm @) = (B, €, )). Then a short computation, using ¥° 7 (X) =
= pu(D" w1 (r)(X°)), gives

(5.1) Ver =[or*/ox, + Af (0) TS, 7] €, ® dx,

VI. COMMENTS ON THE MAP B,
AND THE UTIYAMA EXTENSION PROCESS

One sees from the coordinate expression (5.1) that the map B_y (7)) = (),
V7 (x)) is well-defined and is 1nJect1ve To see that B is surjective, suppose
(z zZYEE GBA (M, E)and letx -1r (2), z* _ek(w' (z))

,. = ek[\IJ ¢4 (a/ax } ] &, z are the local coordinates of z, z"). Then define
a local section 7 : Ua - E by

©6.1) TE) =,z G e + [2F — 4] ITE, 2™ 16, (F) —x,(:))e,)
then |

™ (x) = z*

atk

— (x) =z —A"(v)(X)
ax

and consequently Bv = 1.) = (z, z'). This shows that 37 is surjective and that
-1 N _ =
37 (z,z)=[7],
where 7 is defined by (6.1). From this we get as well a coordinate expression
for the Utiyama map:
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U], 0],) =B (1(x), Vor(x))

=[7],

where 7 is a local section of £ with
6.2) T(x) = 7(x)

a7k o
— =@+ [Af(0)(x) — A{M)IT Y, ™7 (x)

ox .
i j

Formula (6.2) indicates the extent to which the extension L;’ =L o U7 is
an appropriate generalization of Utiyama’s extension (Yang-Mills trick): for
trivial bundles P = M x G, the extension by the trivial connection Y (47(7) = 0)
has roughly the effect of obtaining L7 from L, by replacing the ordinary deri-
vative of 7 by covariant derivatives.

The invariance of L 1 under the set

GT = {B;lo po B,’l p €EGAP),  }

of bundle maps of J'E is clarified by the following calculations. Suppose
p:P|W-> P[ W is a local gauge transformation (so that p(u) = uA(), X : P| W >
- G, Mug) = g ' \u)g), then on U, C W, X is given by \u) = ¢;i(u)‘])\a(x)
¢;)1( (u) where x = n(u) and A (x) = A, 5 (e)). A short calculation shows that for
@z, z") EE! |U,,p@, 2") = (p(), p(z")) has coordinate expression

peY =B, A\ (x)z"
P =By, A\ )]
(x = m (2)). Using that, together with the foregoing, one finds that
(7, =8 epo B (7],)
is represented by a local section 7 : U, - E with
T*(x)=B,, A 6N (x)
and
a7k
o () = B,,, A, CNT™ (x) + LVEOBA, ), T), ,, 7™ (x)
where B(A_ (x)) i; the matrix with entries B, , (A (x)) and [. , .] is the usual

commutator bracket. Thus in Utiyama’s case (P = M x G, 7 trivial, A{‘ ) =0
its not hard to see that invariance under G7 is equivalent to global gauge in-
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variance).

VII. PROOF OF LEMMA 1

The final detail that remains is the proof of Lemma 1 (Section II). For this
first define a local bundle map A, - A% (M, AdP)| U_-J'Cas follows. A w in the
former bundle (in the fiber over x € U ) has coordinates: W?j = yo[w(d/ox, |, ,
d/8x, |, )] where y is the fiber coordinate function on AdP. Define f7 - U, = R
by f; &) =— w‘.;”[xj(x) —xi(x)] where wi;.‘“ = w'“l ifi <j andw,.]".‘” =0ifi =]
Then

0=1[e,—fie) dx;
defines a local section @ - U_ - C with

A%0)x)=0
7.1 !
’ 047(0)(x)/ axl. =— w;;.‘

Consequently F g (x) = w and so we take
A, W) =[o],

From the construction it then follows that 2 ¢ A = 1, so £ is an epimorphism
(Cf. Garcia [3] for the same construction). Now extend Garcia’s map A to
E' e A*(M, AdP)| U, by

Al@ 2z, w)= (Bj\i(w )@, 2, A (W)
Then its easy to see that '
Qo Al =1
(so Q% is an epimorphism). Next suppose ([7 ], , lo]) € JUE ® O)| U, andlet
a7l [3]xl) = A} o Q% (I7],,10])
Then by the foregoing (Cf. Egs. (6.2) and (7.1))
A{@)x) =0
34 )(x)/ox, = ;}-};’ (0)x) i <j i
and 0 i=zj
Tx)=1()
o7* ark

; x)= a—x- )+ Af (0)x) T, ™™ (x)
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—1%

Now since p! (o], [r1)=(p"" ol,, [p~! *'r]x) for any local gauge transfor-

mation p, the completion of the proof follows from:

LEMMA 2. Suppose 0 is a connection and x € M. Then relative to a chart U_
about x there exists a local gauge transformation p such that

A p™ o) x) =0

A4 p™! "o)x)fox, = | Fr(0)x) i<j
0 i=j
Furthermore for any section 7 of £
(071 )= 7(x)
—1%*_\k aTk a m
o(p™" 7Y (x)/ox; = é-x— () + A5 (0)(x) T;zcm ™ (x)
i

Proof: Let K = Af (o)(x),Ks. = aAf(o)(x)/axj
drby e 1
[1/2[K}’. +C§beK;] if 1<1]

i

dpb:r: ,
1/2[K‘;I.+ Cap KiKl. lifi=j

ij
where C7, = 328 (e, e)/ay‘f ayg,' B : G x G = G is the group multiplication (so
the structure constants mg p =Caqp — Cg 4)- On a suitably smaller neighborhood
U, C U, about x we can define a map A : U‘; ~ G such that A2 = y® o A is
given by
N G) = [)”‘(e) + K [x,66) —x;(x)]
+ H:.'I.[xi(i’) —x,;x )][x,-(f) —-x,.(x)]

Then define A : P| U, - G by

A@) = ¢ 3 @I () 6,360
where X = n(iz). This gives a local gauge transformation p : P | U; ->P| U; o) =
#N@). If h = u~ ! (0) is the corresponding Ehresmann connection, then by exa-

mining the component expressions A,.” 0 h = Alf’ (p~'"0) for p~'"h one
finds (for any gauge transformation p) that

Al (P~ o)y =—MI+ N2 AL (0)
where

_ B° o,
M) = — AEONEH — ®
oy ox;
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) ~ B
N E) = — Q@0 — A&,
ayq oy,

This rest of the proof is now a straight-forward calculation from this. .

VIII. CONCLUSION

In conclusion, we outline the vector field approach to Theorem 3, which is
along the lines of Garcia’s proof of Utiyama’s theorem (Theorem 5.1 in Ref. 3).
In addition, we briefly describe now the approach due to Mangiarotti and Mo-
dugno, using adjoint forms and jet shift differentials, encompasses all of this
as well, [18, 19, 20].

The representation of the automorphism group of P as bundle maps on asso-
ciated bundles carries over to vector fields as well. In particular, suppose that
Z is an infinitesimal gauge transformation (a vertical right invariant vector field
on P) with flow p , » and let '5, be the representation of p, on the interaction
bundle R = E & C, with Z(r) = [dﬁt(r)/dt] |t=0 the corresponding infinitesimal
generator. This representation Z of Z on R prolongs, in the usual way, to a re-
presentation Z' of Z as a vertical vector field on J!R. Then it is easy to see that
a Lagrangian L™ :J'R - R is locally gauge invariant if and only ifZ*@*y=o0
for every infinitesimal gauge transformation Z. In terms of a standard chart
on JYR (with coordinates X, zk A:.’, z]’.c , A{’].) the component expression for
Z' works out to be

71 2
Z' = WU + (3W°[ax DUS + I, (97 W [ox,0x YUY,

where W(x) = Z(y°)(¢, , (€)) and
Ug = 8/0A5; + 3/3 A
Ul =—2/0A? + (T5,2P ) 8/ozF + (m;bA;’) 3/a45,
U? =Tg,(@° 8/8z* +22 8/3z) + m{, (4] 3/34 + 41 3/047)

Now with a little work one can show that local gauge invariance of L* is
equivalent to the three local conditions: (C,) U;'j(L*) =0,(C)HUILY) =0,
and (C,) U° (L*) = 0. Further work shows that (Cy) and (C)) imply that Lt
factors: LT = K o Q% and then (C,) gives that K* is gauge invariant (and
conversely). Thus (modulo a good many details) one gets a proof of Theorem 3.
This is Garcia’s approach [3] in proving Utiyama’s theorem.

The contribution of Mangiarotti and Modugno to the theory was the reco-
gnition that the local conditions (C,), (Cl), (C,) arise from global conditions
on certain adjoint forms and jet shift differentials connected with L* . We briefly
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sketch the ideas behind their work.

Letm, - J¥R - M be the k-th order jet bundle for R =E & C, and for a vector
bundle Q over M, let A;, J*R, Q) ~AN'T*M o Q denote the bundle over J*R
with elements (z, 8,), where z € JER and § TkaR X ...x TkaR -0,
x = m (z)) is an rdinear form which vanishes whenever the of its arguments
is vertical (in ker dm, |,).

The sections Q%7 = A;, (J*R, Q) of this bundle are the horizontal, Q-valued,
rforms on J*R. In particular AdP*") and Ad*P*'") are the adjoint and co-
adjoint r-forms. Now, assuming that Q is an associated bundle, each section
s =(7,0):M — R gives rise to a diagram

Q(k")-*A'(M, Q)_,AH I(M, Q)—>Q(k+l"+ 1)

where the mapping (arrows) are j, (s)*, V?, and m¥, , Tespectively. This gives
the jet shift differential d : Q¥ 7/ > QW+ 1.5+ 1) gefined by

6, =mf, oV oj (9%0)],

where z = [s], =j,, ;(5)(x). An additional key element in the theory is the
mapping B* : V*Q%.") 5 4d*P* ") which arises from the representation of
infinitesimal gauge transformations as vertical vector fields on associated bundles.

Now suppose A € A,"}(JIR) is a Lagrangian form (m = dim M) (when M has a
volume form A then A globally has the form A = L? n}(8); otherwise A only
has this form locally). Due to the product nature of R = E @ C, one gets de-
compositions m = (mg., mc) and e = (eg, e.) of the momentum form and
Euler-Lagrange form for A, with

mEeV*E(l'm"‘l), mCEV*C(I"’"” o) Ad*P(l,M—Z)
e, EVFERM), ¢, €V*CT™) ~ gd *p2m),

Based on these constructions Mangiarotti and Modugno recognized that the
local gauge invariance of X is equivalent to the following three conditions (Cf.
Ref’s 18,19, 20):

(CO) m, € 44*pl.m=-2)
(€) e =dm, —B*(my)
<, de, = B*(e,).

These conditions generalize nicely their previous conditions (Ref. 9) for free
gauge field Lagrangians (since one can take E = 0, so that m; =0 = ep in the
above). Their work also contains other results, such as the factorization of A
through the extended curvature map and the minimal interaction condition.
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