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gauge- particle field interaction:
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Abstract. The paper classifies the locally gaugeinvariant Lagrangians on thejet
bundleJ

1 (E ~ C), for interacting particleand gaugefields. This servesto clarify
the global nature of the Utiyama extensionprocess(Yang-Mills trick) for arbi-
trary principal bundlesP and gives the classical (local) results when P is trivial:
P = M x G. The emphasisof the paper is a formulation of the results in terms
of geometricobjectson associatedbundlesoverM rather than on bundlesover P.

I. INTRODUCTION

In his original paper [2] on invariant interactions,Utiyama proved a theorem

(now known as Utiyama’s theorem) that classified those Lagrangiansfor the
gauge fields which are locally gaugeinvariant. While Utiyama’s argumentsare
local in nature (relying on a trivial bundle structure)global formulations of
this theoremand otheraspectsof his paperfor non-trivial bundlessubsequently

have appearedin numerousplacesin the literature (Cf. Bleecker [2], Garcia

[3, 4, 5], Garcia and Perez-Rendon[6], Parker [7] and Mangiarotti and Modu-
gno [8], andModugno[9], for example).

In this paper,we prove the following generalizationof Utiyama’s (classifica-
tion) theorem: A LagrangianL~ for the particle fields r interactingwith gauge
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fields a is locally gaugeinvariant if andonly if it is a function of only the particle
fields r, their covariant derivativesV~’r, and the curvatureF° of the gauge
fields a. We provethis at the group level ratherthan by passingto vector fields

(infinitesimal gauge transformations),illustrating the prominenceof the gauge
orbit structurein the result and avoiding certainintricacies with partialdifferen-

tial equations.
The paperalso showshow to generalizethe Utiyamaextensionprocess(Yang-

Mills trick) for obtaininga locally gaugeinvariantLagrangianLI for particle-gauge
interaction from a <<globally>> gauge invariant LagrangianL

1 for the <<free>>

particles. Since for non-trivial bundles, global gaugetransformationsare non-
existent,we show,usingthe classificationtheorem,that an appropriategenerali-
zation involves invarianceof L1 undera certain set G of local bundle maps.
Our approachhere involves a fixed backgroundgauge field (connection) y,

which seemsindigenousto the global theory (~yis the trivial connectionin Utiya-
ma’s case). The classification theoremalso servesto shed some light on the

topic of <<minimal>> interaction Lagrangiansfor the particle and gauge fields.
An additional purposeof ther paper is to emphasizean appropriate fiber

bundle formalism for expressingthe global aspectsof the gauge theory (no
local coordinates,trivial bundle structure, etc.). Our approachis essentially

the approachoriginated by Garcia [3] (also cf. Modugno [9], Mangiarotti and

Modugno [8]). The particle and gaugefields are sectionsr : M -+ E, a : M C
of certain fiber bundles E, C over the basemanifold M (spacetime).Then an

interaction Lagrangianis a smooth map L J
1 (E e C) —~ IR on the first order

jet bundle of their fibered product:E a C. The other prominentapproachto

a global formulation of the theory is to view the gaugefields as certain 1-forms
on a principal bundle P over M (cf. Bleecker [2]), and in this approachthe ap-

propriate bundles are equivariantbundlesover P. The connectionof this with
the former approachis briefly delineatedin Sections III and IV below. Basi-
cally the natural equivalencebetween the bundlesin the equivariantcategory
and their associatedbundlesover M allows one to formulate the theory in either

category.
After submissionof this paperit was broughtto our attention that the recent

work by Mangiarotti [18, 19] and Modugno [20] extendstheir previouswork

on free gaugefields (Ref.’s 8-9) to gaugefields interactingwith particle fields.
Their work will be briefly describedin the conclusion (SectionVIII) for the
sakeof comparison.

II. A GEOMETRICAL STRUCTURE FOR THE THEORY

In this section we presentthe main body of our resultsand the indication
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of their proofs, relegatingthe precise definitions, descriptionsof notation,and
furtherdetailsto the ensuingsections.

The natural tool for our formulationof the gaugetheory is the functor from

the category of equivariantbundles S -~ P over a fixed principal bundle P =

= P(M, G) -~ M into the categoryof bundlesoverM, wich takesS into its asso-
ciated bundleS/G —* M. Thus for us the gaugefields are sectionsof the connec-

tion bundle C = A
4~!C(P,TP)/G and the particlefields are sectionsr of an appro-

priatevector bundleE = (P x F)/G (Cf. also Ref’s 3, 6 for relateddevelopments
on this approach).While onecanformulatethe theory in the equivariantcategory
(as, for example,Bleecker [2] does)we find the associatedbundlesmore conve-

nient since then the fields are functions (sections)on spacetimeM and onehas
available all the standardvariational calculus(Euler-Lagrangeequations,symme-
tries and conservationlaws) basedon the jet bundlesJ’E, J

1 C, etc. (for this
Cf., for example,Hermann [10, 11], Garcia [12], Krupka [13], Betounes [14,
15, 16]). In the equivariantcategory one must developthe variational theory

from scratch(Bleecker[2], Parker[7], etc.).
The global formulation of Utiyama’s theoreminvolves the curvature map

~1:PC-~’A2(M, AdP) definedby

(2.1) ~ =F°(x)

(Cf. Garcia [3], Garcia and Perez-Rendon[6], Mangiarotti and Modugno [8]).
With a denoting the fibered product, f2 extendsnaturally to a bundleepimor-

phism ~ :J’(EaC)-+E1 nA2(M AdP)(withE1 ~E~A’(M,E)) defined
by

(2.2) f~~([r]~,[a]~)= (r(x), V~’r(x),F°(x))

Furthermore,each fixed connection~y: M —~ C gives a naturalbundle iso-
morphismB.

5 :J’E-~E’ ‘=E�~A
1(M, E) definedby

(2.3) B([r]) = (r(x), V’5r (x))

Thusonegetsthe following commutativediagram:

J’E ______ U ___ J’(EOC) q
2

(2.4) B A+\ ~+
7/1 _

E’ek-(M,AdP) “~A
2(M,AdP)

p
1 p2
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wherep1,p2, q2 are the naturalprojections,~
2’j =p

1 o ~ =p.,

and U7 ~B’ o ~ (the Utiyamaextensionmap).
Now there are representationsof the automorphismgroup Aut(P) of P (and

thusits subgroupGA(P) of gaugetransformationsof P) on the associatedbundles:

C, E, E’, A
2(M, AdP) and their fibered products.For simplicity we denotethe

representationsof the p E Aut(P) againby p, andthe prolongationsto the respec-
tive jet bundles by p’ . The Lagrangiansof interest to us here are thosewhich
are invariant L = 0) under infinitesimal gaugetransformationsZ (a repre-
sentationof a vertical right invariant vector field Z on P). However, since the

flow generatedby Z consists of only locally defined gaugetransformations

we concentrateon the notion of local gaugeinvariance:A local gaugetransfor-
mation of P is a local diffeomorphismp of a restrictedsubbundlePj W = ~r’ (W)

over some open W C M, such that p(ug) = p(u)g and ir o p = ir. We denotethe
set of local gauge transformationsby GA~~~1OC• The above representationsof
Aut(P) on associatedbundles carry over to GA(P)IOC as well, and a function
K on such an associatedbundle (or a LagrangianL on its jet bundle) is called

locally gaugeinvariant if K o p = K(L o p1 = L) for everyp E GA(P)
1OC.

The resultsof the papercannow be statedas follows

THEOREM 1. The extendedcurvature map f1f intertwines the respectivere-

presentations:

c~~~p’=pocl+

for everyp E Aut(P) (andalsofor local automorphismsof P).

The proof of this is given in Section IV. As a corollary one can now easily

prove

THEOREM 2. If a LagrangianL~ : J
1 (E a C) —~ JRfactors through &2~

= K~~

for some K~ : E1 a A2(M, AdP) -~ IR, then L~ o p’ = L~ if and only if
K~o p = K~. In particular L~is locally gaugeinvariant if and only if K~is. •

Ourmain result is

THEOREM 3. Each locally gaugeinvariant Lagrangian L~: J1 (E a C) -÷ JR factors

through ç~+:

= K~~
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By theorem2, K+ is necessarilylocally gaugeinvariant.

We provethis theoremvia:

LEMMA 1: For each chart U,~ C M there existsa local bundlemap

A~:E
1aA2(M,AdP)-s.J’(E~C)

(definedon thefiber over U )suchthat

(a)~ oA~ =1

(b)for each ([r]~, [a]~) EJ’(E a C), x E U~there existsa local gaugetransfor-

mationp suchthat

A~ ~ ([~~]~, [a]) = p1 ([r]~, fa]~).

With this Lemmaonenow easily has:

Proof of Theorem3: on the fibers over Ua defineK~by K~ = L~o A. Then
sinceL~is locally gaugeinvariant,part (b) of Lemma 1 showsthat

K~o1L~=L~oA~o~ =L~

on the fibers over U~.But since f1~is an epimorphism,this lastequationshows
that K~= K~on the fibers over Ua fl U~.Thus one getsa globally defmed
mapK~suchthat K.F ~7+= L+.

Putting theorems2 and 3 together then gives the classificationtheorem:
A LagrangianL~ on F (E a C) is locally gaugeinvariant if and only if there

exists a locally gauge invariant function K~ on E1 ~ A~(M, AdP) such that
L+ = K+ ~ ,i.e.

L~([r]~, Ea]~)= K~(r(x), V°r(x), F°(x)).

As a corollary (by,say,takingE = 0) oneobtaines:

UTIYAMA’S THEOREM: A Lagrangian L
2 : J

1 C -~ JR is locally gauge inva-
riant if and only if there existsa locally gaugeinvariant function K

2 : A
2(M,

AdP) —~JR suchthat

= K
2 o

i.e.

L2([a]~)=K2(F~’(x)).

Finally, the otherside of the diagram(2.4)givesa prescriptionfor the:
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UTIYAMA EXTENSION PROCESS: with respect to a given connection ‘y
M -+ C, eachLagrangianL

1 : J
1E-÷ JRfor theparticlefieldsextendsto a Lagrangian

LI : F (E a C) -+ JR for interacting particle and gaugefields. This Lagrangian
is definedby

L7=L oU

1 1 ~

where
U =B’of2~=B~op o~

7 7 1 ~ 1

is the Utiyamamap (relative to y).
Examinationof U in local coordinates(Cf. Section VI) showsthat this is an

appropriategeneralizationof Utiyama’s constructionand reduces to his case
(P = M x G) when ‘y is the trivial connectionon M x G. The presenceof ~ in

the extensionis perhapsdisconcerting,but for non-trivial bundlesthis is in the
natureof things (there is no canonicalisomorphismJ’E -+ E’). If one wishes

to changethe rules, this difficulty can be obviatedby just consideringfunctions
K

1 : E
1 -+ JR as representingthe particle Lagrangians(Cf. Ref. 6). Utiyama’s

result that the extensionLI is locally gaugeinvariantwhenL
1 is globally gauge

invariantgeneralizesas follows. For non-trivial principal bundles the notion of
a global gauge transformationmakes no sense,and so we proceedto get the

correct invariance conceptfor L1 from the classificationtheorem.Noting that

LI=KTopio ~+

where KI = L1 a B
1 , we seeby Theorem2 that LI is locally gaugeinvariant

if and only if KI o p
1 is; and of courseKI o p1 is locally gaugeinvariantif and

only if KI is. But.

KI op = L1 o B;
1 o~

=(L
1 oB~

1opoB)oB~

andsoKI~op=R7if andonly if L
1 oB~ opoB =L1.Thus:

THEOREM 4: The extensionLI is locally gaugeinvariant if and only if L1 is

invariant under

G={G~opoB~pEGA(P)10.}

By examiningthe coordinateexpressionfor the local bundlemap B
1 o p o B

FE -+ J’E (SectionVI) one seesthat invarianceof L
1 under G is an appro-

priate generalizationof Utiyama’s global gauge invariance,and reducesto his
case(P = M x G) when~ = the trivial connection.
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The final stagein Utiyama’s extensionprocessis to add on to LI a locally
gauge invariant Lagrangian for the gauge fields, which by Utiyama’s theorem

has the form K
2 o = K2 p2 ~ ~ Thus one obtainsa locally gaugein-

variantLagrangianof the form

L~=(KI op1 +K2op2)ocl~,

which by our classificationtheoremhas,among all the locally gauge invariant

Lagrangianson J
1 (E a C), a <<minimal>> amount of interaction between the

particleand gauge fields (we do not give a precisemeaningto <<minimal>) interac-
tion here).

III. EQUIVARIANT BUNDLES AND THEIR ASSOCIATED BUNDLES

The equivariant category is the underlying format for the differential geo-

metric aspectsof gaugetheory,andwe review here a few main featuresof this,
some of which can be found in the standardtexts by Bleecker [2] andKoba-
yashi andNomizu [17].

For any fixed basespaceM, considerthe categoryof fiber bundlesp : E -i’M

over M with the set of morphismsB(E, E) consistingof the fiber preserving
diffeomorphisms (bundle maps) f E -÷ E. The diffeomorphisminducedby f

on the basespaceis denotedby ~M M —~M. Letting F(E) denotethe set of
sections r : M -~E, one gets for eachf E B(E, E) a map (pullbackmap)f* =

= r’(E) -+ F(E) definedby
f*(r)...fl orofM

When E is a vector bundle,we let A”~(M,E) denote the bundleover M with
fibers A~’(M, E)~ consisting of the k-linear, anti-symmetricmaps O,: TM x

x TM~-÷ E~.Theneachf E B(E, E) gives rise to a bundle map A” If) : A~~(M,

~ od.ç~!~(~)).

The sectionsof A”(M, E) will be denotedby A~’(M,E) (A” r oAk), and
are the differential k-forms on M with valuesin F(E). For f E B(E, E), the pull-
backmapAs” (f)* : Ak(M, E) —~ Ak (M, E) is

AkU)*(O) =A”Cf~)o 8 ofM

Throughout the paper we supposethat G is a Lie group (with Lie algebra

~) and that ~r:P -* M is a principal G-bundleoverM with right G-actiondenoted
by RgU = ug. If S andQ aremanifoldswith right G-actions,thena map h :S -~Q
is called equivariant if h(sg) = h(s)g for every s E 5, g E G. In particular the
automorphismgroup Aut(P) of P consistsof all the equivariantdiffeomorphisms

p : P -~ P. The subgroupGA(P) of gaugetransformationsof P consistsof those
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automorphismswhich induce the identity on the basespaceM. An equivariant

bundle over P is a fiber bundle b : S -~-P with right C-action suchthat ~5is an

equivariantmap. The equivariant cateogry has the equivariant bundlesoverP

as objectsand the equivariantdiffeomorphismsBe(S~S) as morphisms.For each

S in theis categoryoen gets art associatedbundle ~‘ : S/G -+ M, whereS/G is the

set of equivalenceclasses[s] (~s’if s’ = sg for someg E C), and 5’([s]) ir o
5 (s).

This associationS -* S/C gives a covariant functor which takes a morphism

fE B(S, S) over into the bundle mapfG : S/G -*S/G definedbyfG[s] = [f(s)].

The basic result for associatedbundles is that the sectionsof S/C are in I-I

correspondencewith the equil’ariant sectionsF(S) of S:

PROPOSITION 1. Thereis a bijection

p : F(S)-+ F(S/G)

such that

f~ oppof~

for every f E Be(S~S). Thus p is a natural equivalencebetweentile functors

Fe and F (./C). U

WhenS is an equivariantvector bundle the aboveconsiderationsapply equally
well to the equivariant bundle A”(P, 5) whoseright action is given by A~(Rg)~

where Rg denotesthe right action on S. This action restrictsto the subbundle
Akh, (F, 5) consistingof (u, 8) E Ak (P, S)

0 where 8 is horizontal; 0 (Z~

Z~)= 0 wheneverone of the 4’s is vertical: dir = 0 (i.e.,4 E VP0 where

VP is the vertical subbundleof TP). Thereis thenanaturalequivalence

v :4(P, S)/C _~Ak(M,S/C)

voAk(f)G =A”(fG)ov

and so in the sequelwe will identify thesebundles. Let A~JC(P,5) denote the

equivariantsectionsof A~J(P,S) (the horizontal,equivariant,k-forms on P with

valuesin F(S)). The analogof PropositionI is

PROPOSITION2. Thereis a bijection

ii” :A~(P,S)~~Ak(M,S/C)

suchthat

o A” (f)* = Ak (f~ )* ~plc

(so ,~kis a natural equivalence). U
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IV. THE CONNECTION BUNDLE AND PROOF OF THEOREM 1

We now specialize the foregoing to the bundles of concern for this paper.

For the sake of simplifying the notation (but at the risk of addingconfusion),
we will denotethe naturalequivalencep~’ in Proposition 2 simply by p andthe
pullbacks like A

1’ (J’)* by f*. Furthermorethe equivariant bundles S of con-

cern here are such that eachp E Aut(P) gives a ~ E Be(S) with = p. The
map ~ together with the corresponding map ~ S/G -+ S/Cwill bothbe denoted

simply by p. With these conventions, the identity in Proposition2 reads

P~ p = p 0

The specificbundlesweneedare the following:

(1) SupposeF is a finite dimensionalvector spacewith left linear G-action
B : C xF —~F, B(g, fl = g~.ThenP xF is anequivariantbundlewith right action:
(u, ~)g (ug, g1~).We denote the corresponding associated bundle by E =

= (P x F)/G. For p E Aut(P), one gets an equivariantbundle map of P x F:
p(u, fl = (p(u), ~). Using the canonicalidentification of F with the fibers of
P x F, onehasA1’(P, P x F) A~r~(P,F) and sop(u, 0~)= (p(u), 8~o dp’ !(~))~

Then for an F-valued k-form 8 E A”(P, F),(p*8)
0 = °p(u) ° dpI~.

(2) The tangentbundle TP is an equivariantbundle with right action (u,Z~)g =

= ( g, dRg I 0Z0). This action restrictsto the vertical subbundleVP C TP. Each
p E Aut(P) extendsto an equivariantbundle map of TP (and VP) given by p(u,

Z0) = (p(u), tip 0Z0). By the foregoing, the sectionsof TP/G correspondto

equivariant (i.e. right invariant) vectorfields Z on P : Zug = dRg I ~ (These

are the infinitesimal automorphismsof F). The bundle VP/G is calledtheadjoint

bundle (gauge algebra)and the sectionsof it correspondto vertical equivariant
vectorfields on P (the infinitesimal gaugetransformationsof F). We takefor the
Lie algebra ~ of G the set of left invariantvector fields on G. The map F~

C -+ F, F0 (g) = ug gives a representationF : -+ Vect(P)of ~ as fundamental
vectorfields on P : F(~)0 dF~e~eNow P x ~ is an equivariantbundlewith
right action: (u, ~)g = (ug, Ad5...1 E), and there is an equivariantbundle iso-
morphism Q : P x —~ VP given by Q(u, ~) = (u, F(~)~).Consequently Ad? =

= VP/C (P x f~)/G.

(3) From the foregoing generalities,the equivariantbundle A’ (P, TP) has its

right action given by (u, b~)g = (ug, dR5 u 0 b~o dR5_i ug~andthe action
of p E Aut(P) on A’(P, TP) works out to be p(u, b~)= (p(u), dp ~ o b~a

° ~ P(U))~ Consequently the pullback of sections b : P -÷A
1(P,TP) : b(u) =

= (u, b
0)is given by p*(b)0 = dp’ I p(u) bP(U) dpJ0. All of theseactions
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restrict to the equivariantsubbundle:AJ~JC(P,TP) = ~(u, h~)I h
0 is horizontal

and dir I~° h0 = dIr I Each h0 projectsTP0 on a complementarysubspace
to VP0 and I — h0 : TP0 -~ VP~restricts to the identity on VP~. The bundle
A~(P,VP) of such elements (u, v) is then an equivariantbundle isomorphic

to A~,~ (P, TP). We call A~~ (P, TP) the Ehresmannbundle and the equivariant

sectionsof it: h : P —~A~C(P,TP). Ehresmannconnections.The corresponding

associatedbundle

C~A~1,~(P,TP)/GCA’(M, TP/G)

is called the connectionbundle, and its sections a : M -÷ C, connectionson M
(they are certain 1-forms on M with valuesin F(TP/G)). EachEhresmannconnec-

tion h gives an equivariantsection ~ : P —~ A1’ (P, VP) (v” = I — h0) and using

the isomorphismQ : P x -+ VP, one gets the corresponding connectionform
~h This is the equivariantsectionw’~ : P —~A’ (P, ~ ) A ‘(P. P x f~) defined

by wZ (Z) = Q
1 (v’s (Z)). All of thesedifferent ways of viewing connections:

h, vI?, wI?, ~hU(TPU)}UEp are of course equivalent, but we take Ehresmanncon-
nectionsas fundamentalsincethey correspondto connectionsa onM :h =

1r’ (a).
For an Ehresmannconnectionh one gets the usualcovariant derivativeDI?

A~(P,F) -+ A~J~
1(F, F) definedby DI? =

11h o d where it is the horizontaliza-

tion operator on forms .11” (O)(Z’ Z
m) = 8(hZ’ hZtm). Thus each

connectiona : M -* C gives a covariantderivativeVU : A~’(M, E) ..+ Ak + (M, E)

definedby

V°~=p[Dv’(a)p_l(T)].

In addition the curvature of h is the form ~ DI? ~ E A~ie(F, ~) and the
corresponding curvature of a is

F° = [Al (o)].

The transformation properties of these operators and forms under automor-
phisms p E Aut(P) is as follows. First an easycalculation showsthat

Hp*hj p*oHS’I op_l*

andconsequentlysince d commuteswith puilbacks

DP*I? =p*oDh ~p_l*~

Hence for 0 E A~(P,F)

~ (p*O) p*(DhO)

A short computationshowsthat the connectionform wh transformsaccording

to
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WPh =p*(~h)

and consequently
f~psh p*(~h)

Passing now to the associatedbundles and using the fact (Propositions 1

and2) thatp is a naturalequivalence,one finds that

Vp*a(p*)*(V0)

for r E A”(M, E)and

F~~°=p*(FG)

With theseidentitiesthe proofof Theorem1 (SectionII) is as follows.
First recall that for a fiber bundle Q -~M over M, the 1st order jet bundle

J
1 Q consists of equivalenceclasses [r]~, x E M of local sectionsr : M —, Q.

Two sectionsr , ~i being equivalentat x if they,as well as their first orderpartial

derivatives,have the same valuesat x. A bundlemap f : Q -+ Q then prolongs
to a bundlemap f1 :J’ Q -~‘J1 Q definedby

f’([r]~) = [f~’ * r]f(X)

Puttingeverythingtogether.theproofof Theorem1 is

~ ~p’ ([r]~, [a]~) ~7+([pl*r 1PM(’)’ [p_l*g] (x) )

= ((pi*r)(pM(xfl,(vp l*op_i*r)(pM(x)), F~i*0(pM(x)))

= (p(r(x)),p(V°r(x)), p(F°(x)))

=po f2~([r]~,[a]~)

V. COORDINATE EXPRESSIONS

For some of the ensuing work we will need the following coordinate expres-
sions. Let ~ : (J~x G -~P~Ua aslr’(Ua)be a local trivialization ~
as ~(x, g), so G -~ir~{x} is a diffeomorphism.Assumethat eachUa CM

is a chart on M with coordinatefunctionsx., i = 1,. . . , dim(M), andsuppose

that (V,y’1), a = 1,... ,dim (G)isafixedchartabouttheidentityeEG.Then
(Ø(U x V),~,j7°)isachartonPwith~.(u)=x~.o1r(u),j7~~(u)=y0(4i~~()(ufl.

Thereare local equivariantvectorfields E, andE°on P~U~definedby

E~(u)=dR~—i(
0)J0(~—~)
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E0(u)=dR~i(u)I(_ ~
where x = ir(u) and u

0 = Ø0~(e).Note that if Z is an equivariant vector field
on P, then its local expressionZ = Z1E~+ Z’~E

7on P I U
0 has component func-

tions Z., Z°which only depend on x : Z1 = ~ ir where Z1(x) = Z,(Ø~(e))
(similarly for Z

0). In the sequel we will identify functions F on M with their

pullbacksF=FoirtoP(i.e.F=F).
If h is an Ehresmannconnectionthen

h(E0)= 0

h(E.) =E
1 —A~(h)E°

where

A~(h)(x)= —h0 ~ ) (y~
0)

are the local components for h (the minus sign is chosen for convenience in the

ensuing formulas).

The corresponding local expression for a connection a : M -+ C is as follows.

Let h = ji~’(a),A~(u)= A7(h). For a vectorfield X onM, the section a(X) :M -÷

TP/G, (d(X)(x) = a~(X)~)) corresponds to an equivariant vector field X°: P—~

-+ TP on P : X0 = p~’(a(X)) is called the horizontal lift of X (h(X°)= X°,
dir = X,T (U )). Locally one has

X° =X
1(E1—A~(u)E°),

X, = X(x1), and letting e~= p(E.),e’~= p(E
0)bethe correspondinglocal sections

of TP/G one finds that

a(X) =X
1(e1 —A’~(a)e

0)

locally on As a 1-form on M with values in F(TP/G) the local expression

for a is

a = (e
1 — A~(a)e°)a dx1

Using any of the various means for computing the curvature (say F°(X, Y) =

= p([X, ~]U — [X
0, yC])) one finds that locally

F° = F~(u)eC a dx
1dx.

where

F~(a)= aA7ax,— oAf/ax.— PnbAA.
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Here the m~’bare the structureconstantsof G relative to the basis T” where(T”)g =dLgle(0/OY le~

The componentexpressionfor V°r , r E I’(E) is as follows. Let : Ua x F-~

E I U0 be the local trivialization given by i~i(x, ~) = [ti, (e), ~], and let {~k} ~
a basis for F with coefficient functionals {e~’}(basis for F*). Then T =

where

r~’(x) =

and

=

The action B : G x F -~F gives a matrix representationof Ta on Hom(F),
again denotedby Ta, with entries

T~ =0B~m(e)/0ya

where Bkm ~ as e,~’(B(g, Em))~ Then a short computation,using V0 r (X) =

= p(Dh ~I (r)(X°)),gives

(5.1) Var =[Or”/0x1+A~ (a)T~mr
m]e~adx.

VI. COMMENTS ON THE MAP B
7

AND THE UTIYAMA EXTENSION PROCESS

One seesfrom the coordinate expression (5.1) that the map B([r]~) = (r(x),
V/yr (x)) is well-defined and is injective. To seethat B

7 is surjective,suppose

(z,z’)�EaA’(M,E)andletxaslrE(z),z” ase~’(~ç~(z)),
k —1’ k kz1 as e~’[~’(z (3/Ox.))] (z , z. arethe local coordmatesofz, z ). Thendefme

a local section~ : Ua -~Eby

(6.1) ~(i) = ,lç~(ze~+ [z~’ —A”(7)(X)T~ z
m

then

~k(x) =z~~

a F”
— (x) =z~~_A~(7)(x)T~mzm

and consequentlyB ([~ ~ = (z, z’). This shows that B is surjectiveand that

B’ (z, z’) =

where ~ is definedby (6.1). From this we get as well a coordinateexpression

for the Utiyama map:
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U7([r]~, [a]~) = B;’ (r(x), V°r(x))

where~ is a local sectionof E with

(6.2) ~(x) = r(x)

3r~

— (x) = (x) + [A7(a)~x) —A~(7)cx)]T~m~m (x)

Formula (6.2) indicates the extent to which the extension L~’= L, 0 U is
an appropriategeneralization of Utiyama’s extension (Yang-Mills trick): for

trivial bundlesF = M x G, the extensionby the trivial connection7 (A7(y) = 0)
has roughly the effect of obtainingLI from L, by replacingthe ordinary deri-

vative of r by covariantderivatives.

The invariance of L1 under the set

G = {B;~ 0 p 0 B I p E GA(P)1}

of bundle maps of J
1E is clarified by the following calculations. Suppose

P .~P I — ~ I W is a local gauge transformation (so that p(u) = uX(u), A : PJ W-~

-+ G, A(ug) = g~X(u)g),then on U
0 C W, A is given by A(u) = Ø~(u)’A(x)

~ (ii) wherex = ir(u) and A0 (x) = A(Ø~(e)). A short calculationshowsthat for

(z, z’)EE
1 U

0,p(z, z’)= (p(z),p(z’))has coordinateexpression

p(zY’ =B~m(Aa(X))Z
m

p(z’)~=B~m(A(x))zr

(x = ~E (z)). Usingthat,togetherwith the foregoing,one finds that

Efl~ asB’ op 0 B([r])

is representedby a local section r : U
0 —~E with

~(x) = Bkm (A(x))r
m (x)

and

a~.k
— (x) = B~m(A (xprm (x) + .,4~(y)(x)[B(A (x)), ra 1~m~m (x)

where B(A(x)) is the matrix with entries Bkm(A(x)) and [. , .] is the usual
commutator bracket. Thus in Utiyama’s case (P = M x G, ~ytrivial, As” (‘1) = 0)
its not hard to seethat invarianceunder G

7 is equivalent to global gauge in-
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variance).

VII. PROOF OF LEMMA 1

The final detail that remains is the proof of Lemma 1 (Section II). For this
first defmea local bundle map A~: A2(M, AdP)J U -+J’ C as follows. A w in the
former bundle (in the fiber over x E U) hascoordinates: w7

1 = 5~”[w(O/Ox, ~
3/Ox1 I~~

1where JYQ is the fiber coordinate function on AdF. Define17: Ua -~IR
~ =wifi<jandw.*4=0ifi~j.
Then

~=[e
1_f7e”] dx1

definesa local section~ : U,~—~C with

= 0
(7.1)

8A~)(x)/Ox.= — w~

Consequently F” (x) = w andso we take

A(w)as (~]~

From the construction it then follows that ~7a A~= I, so 12 is an epimorphism

(Cf. Garcia [3] for the same construction). Now extend Garcia’s map A~to
E’ aA

2(M, AdP) I U~by

A~(z, z’, w)~(B~’(W)(z, z’), /t~(w))

Then its easy to seethat
o A~=

a

(so ~ is an epimorphism). Next suppose([r ]~, [o]~) E J1 (E ~ C) I Ua andlet

([fly’ [~L~)=A ~ (fr] [a]~)

Then by the foregoing(Cf. Eqs. (6.2) and (7.1))

8A°(~)(x)/Ox.= i~’(o)(x) 1 <j
0 i~’/

and

~(x)=r(x)

Or1’
~ (x)=— (X)+A7(O)(X)T~mTm(X)
Oxi Ox.
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Now since p1 ([c]~, [r ~ = ([p~ *a]~,[p~ *r]~)for any local gauge transfor-
mationp, thecompletion of the proof follows from:

LEMMA 2. Supposea is a connectionand x E M. Then relative to a chart U
0

about x there exists a local gauge transformation p such that

A~(p
1*a)(x) = 0

OA~(p_l*a)(x)/3x.= F~(a)(x) j<

0 i�~/

Furthermore for any section r of E
(p_l*)() r(~)

O(p~’*T)k(x)/3x = — (x) +A~(a)(x)T~rm (x)

Proof:LetK7 =A~(u)(x),K7
1 = OAf (a)~x)/Ox.

~ if i<j
I) Ll/2[I’~f+C~b KiKb]ifi~j

where as 3
2B”(e, e)/34 Oy~B : G x G -+ G is thegroupmultiplication (so

the structureconstantsm~= ~“’db — On a suitablysmallerneighborhood
U,~C U aboutx we can defineamapA

0: U~,-+GsuchthatA asy” o A0 is

given by

= 1i~’~(e)+ K7[x1(x)—x1(x)]

L ÷H71[x1(x)—x1(x)][x1(x)—x1(x)]

ThendefineA :PI U~-+ G by

A(i~)=

where~= ir(iZ). This gives alocal gaugetransformationp :PI U~~ ~ :p(u) as

i~X(i~).If h = ,&C’ (a) is the correspondingEhresmannconnection,then by exa-
mining the componentexpressionsAf (p~*h) = A,” (p_i *0) for p~*h one
finds (for any gauge transformation p) that

A,~(p_i*o)=_M7+A1abA~(a)

where

3A~
M~)= — (X0(~),X0(i~i~)— (~)

Ox.
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— (A(~),A(~)’) — (A0(i),e)

This rest of the proofis now a straight-forwardcalculationfrom this.

VIII. CONCLUSION

In conclusion,we outline the vector field approachto Theorem3, which is
along the lines of Garcia’s proof of Utiyama’s theorem(Theorem5.1 in Ref.3).

In addition, we briefly describe now the approach due to Mangiarotti and Mo-
dugno, using adjoint forms and jet shift differentials, encompassesall of this

as well, [18, 19, 20].
The representationof the automorphismgroup of P as bundle mapson asso-

ciated bundlescarries over to vector fields as well. In particular,supposethat

Z is an infinitesimal gaugetransformation(a vertical right invariantvectorfield
on F) with flow p,. , and let P,, be the representationof p~on the interaction

bundle R as E a C, with Z(r) = [d~1(r)/dt] L=~the correspondinginfinitesimal

generator.This representationZ of Z on R prolongs,in the usualway, to a re-

presentationZ’ of Z as a vertical vectorfield on J’R. Thenit is easyto seethat
a LagrangianL~ : J’R -+ fl~is locally gaugeinvariantif and only if 21 (L~)= 0
for every infinitesimal gauge transformationZ. In terms of a standardchart
on J

1R (with coordinatesx., ~ A~,z~, A~)the componentexpressionfor
Z’ worksout to be

= W”U°+ (OW”/Ox.)U7+ ~
1<1(O’W”/ax1ax.)U7

whereW”(x) = Z(y”)(Ø~(e))and

U~= O/3A71 +

U~= — O/OA~+ (77 ZP) OIO4 + (m~’~bA~’)O/OA~1

U” = T”1’~(z” O/Oz” + zç a/3z~+ mab(AIOIOAI+A,/O/OAI/)

Now with a little work one can show that local gaugeinvarianceof L~ is

equivalentto the threelocal conditions: (C0) U,”,(L~)= 0, (C,) U7 (L~)= 0,
and (C2) U°(L~)= 0. Further work shows that (C0) and (C,) imply that L~
factors:L~ = K~o 12k, and then (C2) gives that K~is gauge invariant (and
conversely).Thus (modulo a good many details) onegetsa proofof Theorem3.
This is Garcia’sapproach[3] in provingUtiyama’s theorem.

The contribution of Mangiarotti and Modugno to the theory was the reco-
gnition that the local conditions(C0), (C,), (C2) arise from global conditions

on certainadjoint forms andjet shift differentialsconnectedwith L.F . We briefly
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sketch the ideasbehind their work.
Let ~k :J”R —*M be the k-th orderjet bundleforR asE a C, and foravector

bundle Q over M, let A,(JkR, Q) _ ArT*M a Q denote the bundle over J”R
with elements(z, 0~),where z E J~’Rand O~ : T~JkRx . . . x TZJ1’R —~

(x = ir
1’ (z)) is an r-linear form which vanisheswheneverthe of its arguments

isvertical (in ker dlrk I~)~
The sectionsQ~?)as A~(J”R,Q) of this bundleare the horizontal,Q-valued,

r-forms on J”R. In particularAdP~”,’~and Ad*P(l~,1)are the adjoint and co-
adjoint r-forms. Now, assumingthat Q is an associatedbundle, each section
s = (r, a) :M -+R gives rise to a diagram

Q(kT) ..+ A’~(M,Q) —* A
T~1‘(M, Q) _~ Q(k+ 1 ,r+ I)

where the mapping (arrows) are ‘k (~)*,VU, and ir
1’ respectively.This gives

the jet shift differential d : Q(I~,r) .~Q(k+ 1 ,r+ 1) definedby

dO =lrk*+, OV oik(s)(O)I

where z = [~]~ = ‘k+ ,(s)(x). An additional key elementin the theory is the
mapping 13* : V*Q(IcT) -* Ad*P(l~?)which arises from the representationof

infinitesimal gaugetransformationsas verticalvectorfields on associatedbundles.
Now supposeA E A~(J ‘ R) is a Lagrangianform (m = dim M) (whenM hasa

volume form L~then A globally has the form A = L~ ,r~’(L~);otherwiseA only

has this form locally). Due to the productnatureof R = E a C, onegets de-
compositions m = (mE, m~)and e = (eE, e~)of the momentum form and

Euler-Lagrangeform for A, with

mEEVE mcEV*C(~m_~~Ad*p~,m_
2)

eEEVE, ecEV*C(2~m)~Ad*P(2.m_~).

Based on these constructionsMangiarotti and Modugno recognized that the
local gaugeinvarianceof A is equivalentto the following threeconditions(Cf.

Ref’s 18, 19, 20):

(C
0) mcEAd*P~~m

2)

(C
1) e~=dmc_13*(mE)

(C2) de~=f3*(e)

Theseconditionsgeneralizenicely their previousconditions(Ref. 9) for free
gauge field Lagrangians(sinceone can takeE = 0, so that mE = 0 = in the
above). Their work also contains other results,such as the factorization of A

through the extendedcurvaturemap and the minimal interaction condition.



THE GEOMETRY OF GAUGE-PARTICLE FIELD INTERACTION, ETC. 125

REFERENCES

[1] R.UTIYAMA,Phys.Rev.101,1597-1607(1956).
[2] D. BLEECKER, Gauge Theory and Variational Principles (Addison Wesley, Reading,

1981).
[3] P.L. GARCIA, J. Diff. Geo. 12, 209-227(1977).
[4] P.L. GARCIA, LectureNotesin Mathematics510,365-376(1977).
[5] P.L. GARCIA, Rend. Sem.Mat. Univ. Padova47,227-242(1972).
[6] P.L. GARCIA and A. PEREZ-REND0N, Lecture Notes in Mathematics676, 409433

(1978).
[7] T.H. PARKER, Commun.Math. Phys.85,563-602(1982).
[8] L. MANGIAROTFI andM. MODUGNO, J. Math. Phys. 26, 1373-1379 (1985).
[9] M. MODUGNO, Systemsof vector valuedformson a fibred manifold andapplications

togaugetheories,in Lect. Not. Math., 1251, Springer-Verlag, 1987.
[10] R. HERMANN, Differential GeometryandtheCalculusof Variations, 2nd Edition (Math.

Sci. Press, Brookline, MA, 1977).
[11] R. HERMANN, Geometry,Physics,andSystems(Dekker,New York, 1973).
[12] P1. GARCIA, SymposiaMathematica 14,219-246 (1974).
[13] D. KRUPKA, Some GeometricAspectsof Variational Problemsin Fibered Manifolds

(J.E. Purkyne Univ. Press, Bmo,Czech.,1973).
[14] D. BETOUNES,Phys.Rev. D. 29, 599.606(1984).
[15] D. BETOUNES, C.R.Acad.Sci.Paris299,359-361(1984).
[16] D. BETOUNES, J. Math. Phys. 28,2347-2353 (1987).
[17] S. KOBAYASHI and K. NOMIzU, Foundations of Differential Geometry,Vol. I (Wiley,

NewYork, 1963).
[18] L. MANGIAROTFI, Jet shift differentials in classical gauge theories, in Differential Geo-

metry & Its Applications, Communications (Brno,1986)225-234.
[19] L. MANGIAROTFI, Local gaugeinvanantLagrangians,7th Italian Conference on General

Relativity& Gravitational PhysicsRapallo(Genoa) (1986) p. 227-239.
[20] M. MODUGNO, On systemsof connectionsand invariant Lagrangians,in Differ. Theor.

Meth. in Theor. Phys., proc. XV conf. Clausthal 1986. World Publishing, Singapore
(1987).

Manuscript received: March 8, 1988


